www.ganza-ua.com.ua Главная Карта сайта Добавить в Избранное
фото
Логотип ООО НПФ Ганза

Дуговая плазменная сварка

Электроды в Кривом Роге
desighn

Технические характеристики электродов

Электроды для сварки углеродистых сталей

  1. АНО-4 ф. 3
  2. АНО-4 ф. 4
  3. АНО-4 ф. 5
  4. АНО-4 ф. 6
  5. МР-3 ф. 3
  6. МР-3 ф. 4
  7. МР-3 ф. 5
  8. МР-3 ф. 6
  9. УОНИ-13/55 ф. 3
  10. УОНИ-13/55 ф. 4
  11. УОНИ-13/55 ф. 5
  12. УОНИ-13/55 ф. 6
  13. УОНИ-13/45 ф. 3
  14. УОНИ-13/45 ф. 4
  15. УОНИ-13/45 ф. 5
  16. УОНИ-13/45 ф. 6
  17. АНО-27 ф. 3
  18. АНО-27 ф. 4
  19. АНО-27 ф. 5
  20. АНО-21 ф. 3
  21. АНО-21 ф. 4
  22. АНО-36 ф. 3
  23. АНО-36 ф. 4

Электроды для наплавки

  1. Т-590 ф. 4
  2. Т-590 ф. 5
  3. Т-620 ф. 4
  4. Т-620 ф. 5

Электроды для сварки чугуна

  1. МНЧ-2 ф. 3
  2. МНЧ-2 ф. 4
  3. МНЧ-2 ф. 5

Электроды для сварки высоколегированных сталей

  1. ОЗЛ-8 ф. 3
  2. ОЗЛ-8 ф. 4
  3. ОЗЛ-8 ф. 5
  4. ОЗЛ-6 ф. 3
  5. ОЗЛ-6 ф. 4
  6. ОЗЛ-17У ф. 3
  7. ОЗЛ-17У ф. 4
  8. ОЗЛ-17У ф. 5
  9. ЦТ-15 ф. 3
  10. ЦТ-15 ф. 4
  11. ЦТ-15 ф. 5
  12. ЭА-395/9 ф. 3
  13. ЭА-395/9 ф. 4
  14. ЭА-395/9 ф. 5
  15. НИИ-48Г ф. 3
  16. НИИ-48Г ф. 4
  17. НИИ-48Г ф. 5
  18. ЭА-400/10 ф. 3
  19. ЭА-400/10 ф. 4
  20. ЭА-400/10 ф. 5
  21. НЖ-13 ф. 3
  22. НЖ-13 ф. 4
  23. НЖ-13 ф. 5
  24. ЭА 981/15 ф. 4
  25. ЭА 981/15 ф. 5
  26. ЦЛ-11 ф. 3
  27. ЦЛ-11 ф. 4
  28. ЦЛ-11 ф. 5

Электроды для сварки меди

  1. ОЗБ-2М ф. 3
  2. ОЗБ-2М ф. 4
  3. ОЗБ-2М ф. 5

Плазменная сварка

Дуговая плазменна сварка. Некоторые детали и узлы современных машин и аппаратов работают в таких условиях, при которых они должны быть одновременно механически прочными и стойкими при воздействии на них высоких температур, химически агрессивных сред и др. Выполнять такие изделия из одного материала почти невозможно и экономически нецелесообразно. Гораздо выгоднее и проще изготовить деталь, например, из конструкционной стали, удовлетворяющей требованиям механической прочности, и покрыть ее поверхность более дорогим жаропрочным, износостойким или кислотоупорным сплавом.

Используя в качестве защитных покрытий различные по составу металлические и неметаллические материалы, можно прида вать деталям в целом требуемые механические, тепловые, диэлектрические и другие свойства. Наиболее универсальными и совершенными методами нанесения защитных покрытий являются наплавка и напыление плазменной дугой. Материал покрытия, специально приготовленный в виде мелкогранулированного порошка или проволоки; подается в поток плазменной струей и, нагреваясь или расплавляясь в этом потоке, переносится с ним на обраба тываемое изделие. Одновременно струя плазмы подогревает изделие.

Преимущества методов плазменного нанесения покрытий перед другими (гальваническим, вакуумным, кислородно-ацетиленовым и др.) заключаются в следующем:

  • высокая температура плазменного потока позволяет расплавлять и наносить самые тугоплавкие материалы;
  • поток плазмы дает возможность получать сплавы различных по свойствам материалов или наносить многослойные покрытия из различных сплавов. Это открывает широкую возможность получения покрытий, сочетающих разнообразные защитные свойства;
  • возможности этого способа не ограничены формой и размерами обрабатываемого изделия;
  • плазменная дуга - наиболее гибкий источник нагрева, позволяющий в широких пределах регулировать его энергетические характеристики.

Для плазменной наплавки наиболее широко применяется плазмотрон комбинированного действия. При горении независимой дуги такого плазмотрона между вольфрамовым электродом и соплом происходит расплавление присадочного металлического порошка, а при горении дуги между электродом и изделием поверхность последнего нагревается, и обеспечивается сплавление присадочного и основного металла. Использование комбинированной плазменной дуги позволяет получить минимальную глубину проплавления и долю основного металла в составе наплавленного, что является важнейшим технологическим преимуществом плазменной наплавки по сравнению с другими способами наплавки

Схема установки для плазменной наплавки металлическим порошком

  1. источник питания дуги прямого действии;
  2. балластные сопротивления;
  3. источник питания дуги косвенного действия;
  4. осциллятор
  5. сопло для плазмообразующего газа;
  6. корпус горелки;
  7. отверстие для ввода защитного газа;
  8. питатель для подачи порошка;
  9. трубка, по которой подается газ, несущий порошок (открытой дугой, дугой под флюсом, индукционной и др.).

Защита наплавляемого слоя от воздействия окружающей среды обеспечивается потоком инертного газа, окружающим дугу и подаваемым в наружное сопло плазмотрона. Присадочный порошок подается также инертным транспортирующим газом из специального порошкового питателя.

С помощью плазменной наплавки металлическим порошком можно получить жаростойкие и наиболее износостойкие покрытия из сплавов на основе никеля и кобальта. Этот способ позволяет получить тонкий равномерный слой покрытия с гладкой беспористой поверхностью, часто не требующей дополнительной механической обработки. При плазменной наплавке токоведущей присадочной проволокой дуга горит между катодом плазмотрона и проволокой, являющейся анодом, равномерно подаваемой в пространство между соплом и изделием.

При таком способе обеспечивается более высокая производительность процесса наплавки при малой глубине проплавления основного металла, однако возможности получения тонкого и равномерного слоя при таком способе наплавки ограничены. Кроме того, применение присадочного материала в виде порошка позволяет использовать для наплавки практически любые сплавы, что трудно осуществить при использовании проволоки в качестве присадочного материала.

При плазменной наплавке в качестве плазмообразующего, защитного и транспортирующего газов обычно используется аргон. Расход газа и диапазон рабочих токов и напряжений при наплавке примерно тот же, что и при плазменной сварке. В отличие от наплавки процесс напыления характеризуется большей концентрацией теплового потока и высокой скоростью течения плазменной струи. Появление этого отличия связано с тем, что при плазменном напылении в качестве материалов покрытия применяются тугоплавкие металлы (вольфрам, молибден, тантал и др.) или окислы металлов (Аl2О3, MgO, ZrO2), силициды (MoSi2), карбиды (В4С, SiC), бориды (ZnB2, HfB2), т. е. неметаллические материалы, обладающие весьма высокой температурой плавления.

Эти материалы, приготовленные в виде мелкогранулированного порошка (размеры частиц 40-70 мкм), проходя через плазменную струю, успевают нагреться в основном лишь до пластического состояния. Однако благодаря высокой скорости плазменной струи частицы порошка приобретают значительную кинетическую энергию и при соударении с напыляемой поверхностью расплющиваются внедряясь в нее и заполняя неровности. Пр1 этом кинетическая энергия частиц выделяется в виде тепла, температура их повышается, что обеспечивает прочное сцепление частиц между собой и с поверхностью изделия.

Для напыления используется плазменная дуга косвенного действия, горящая между охлаждаемыми водой вольфрамовым катодом и медным соплом (анодом) и выдуваемая через сопло в виде плазменного факела. На досопловом и внутрисопловом участках плазмотрона происходит плазмообразование. Порошок вместе с транспортирующим его газом подается в небольшое отверстие вблизи выхода из сопла, т. е. вдувается в наиболее высокотемпературную область плазменной струи. Нагрев порошка происходит на участке, который начинается от анодного пятна и заканчивается факелом плазмы.

Эффективность нагрева частиц порошка определяется временем их пребывания в плазме, т. е. расстоянием от среза сопла до изделия и мощностью плазменной струи. Повыше ние мощности может быть достигнуто при использовании двухатомных газов с высоким теплосодержанием, например N2 и Н2. Благодаря высокой теплопроводности водорода увеличивается длина высокотемпературной части факела, что дает возможность повысить температуру порошка за счет некоторого удаления плазмотрона от обрабатываемого изделия.

Однако скорость плазменной струи с удалением от среза сопла понижается. Поэтому следует выдерживать оптимальное расстояние от среза сопла до поверхности изделия, величина которого зависит от параметров режима напыления, от материала покрытия и изделия и изменяется от 4 до 20 мм. Мощность плазмотрона, используемого для напыления, можно повысить также при увеличении длины досоплового и внутрисоплового участков столба дуги, однако при чрезмерном увеличении внутрисоплового участка столба дуги затрудняется возбуждение дуги, обычно производимое с помощью высокочастотного пробоя. Увеличение длины канала сопла свыше определенного предела приводит к явлению шунтирования столба дуги и снижению к. п. д. плазмотрона.

Обычно в плазмотронах для напыления диаметр сопла составляет 5- 6 мм, длина досоплового участка - 4-8 мм, а длина канала сопла - 10-18 мм. Повышение мощности плазмотрона за счет увеличения тока дуги ограничивается стойкостью сопла (анода). При эрозии сопла появляется не только опасность его разрушения, но и возможность загрязнения напыляемого материала, что может резко ухудшить качество покрытия. В плазмотронах для напыления вращение анодного пятна по внутренней стенке сопла создается либо с помощью вихревой системы ввода рабочего газа, либо с помощью магнитного поля, образуемого катушкой постоянного тока, надетой на сопло.

При использовании водорода в качестве рабочего газа с целью уменьшения величины теплового потока, направленного от дуги к соплу, водород применяют в смеси с аргоном, обеспечивающим тепловую изоляцию сопла от столба дуги. Обычно в плазмотронах для напыления ток не превышает 400 а, напряжение при использовании азота и смеси водорода с аргоном в зависимости от их расхода изменяется в пределах 60-100 в. Таким образом, мощность не превышает 40 квт. При этом производительность процесса напыления в зависимости от материала покрытия составляет 2-3 кг/ч.

Качество обработки поверхности при плазменном напылении определяется максимальной прочностью сцепления материала покрытия с изделием и минимальной пористостью покрытия. Высокое качество покрытия обеспечивается при соответствии физических свойств материалов, например в случае близости значений их коэффициентов теплового расширения. Повышение качества достигается при тщательной подготовке поверхности изделия перед процессом (обезжиривание, пескоструйная обработка, сушка и др.) и правильном выборе параметров режима напыления. Эти вопросы подробно рассмотрены в соответствующей литературе.

Продажа электродов в Кривом Роге

Предприятие ООО Ганза предлагает сварочные электроды собственного производства для сварки углеродистых, низколегированных и высоколегированных сталей, а также электроды для получения специальных слоев на рабочих поверхностях изделий и стальную сварочную проволоку для сварки и наплавки. Предприятие ООО Ганза производит следующие следующие виды сварочных электродов в Кривом Роге ::

  • электроды для сварки углеродистых сталей АНО-4, АНО-27, АНО-21, МР-3, УОНИ-13/55, УОНИ-13/45, Пионер-46 (аналог АНО-36);
  • электроды для наплавки Т-590, Т-620;
  • электроды для сварки чугуна МНЧ-2;
  • электроды для сварки высоколегированных сталей ОЗЛ-8, ОЗЛ-6, ОЗЛ-17У, ЦТ-15, ЭА 395/9, НИИ-48Г, ЭА-400/10У, НЖ-13, ЭА 981/15, ЦЛ-11;
  • электроды для сварки меди ОЗБ-2М;
Выбрать электроды Вам помогут прайс-листы предприятия ООО "Ганза". Криворожское предприятие ООО "Ганза" (Кривой Рог, Днепропетровск, Украина) имеет возможность изготовить и поставить сварочные электроды в соответствии с ГОСТ 9466-75 сварочные электроды.

 

Статьи :: плазменная сварка  #  Плазменная сварка
 #  Дуговая плазменна сварка
 #  Микроплазменная сварка
 #  Плазменная плавка и переплав
 #  Плазменная поверхностная закалка
 #  Плазменная сварка - сущность метода
 #  Плазменная сварка PAW
 #  Плазменные технологии нанесения покрытий
 #  Рационализация плазменной сварки
 #  Энергетические свойства плазменной дуги
 
attention

| | |

desighn

baner